Radium Removal: Some groundwater sources contain radium, a radioactive chemical element. Typical sources include many groundwater sources north of the Illinois River in Illinois, United States of America. Radium can be removed by ion exchange, or by water conditioning. The back flush or sludge that is produced is, however, a low-level radioactive waste.
Reverse osmosis per its construction removes both harmful contaminants present in the water, as well as some desirable minerals. Modern studies on this matter have been quite shallow, citing lack of funding and interest in such study, as re-mineralization on the treatment plants today is done to prevent pipeline corrosion without going into human health aspect. They do, however link to older, more thorough studies that at one hand show some relation between long-term health effects and consumption of water low on calcium and magnesium, on the other confess that none of these older studies comply to modern standards of research [27]
A process of osmosis through semipermeable membranes was first observed in 1748 by Jean-Antoine Nollet. For the following 200 years, osmosis was only a phenomenon observed in the laboratory. In 1950, the University of California at Los Angeles first investigated desalination of seawater using semipermeable membranes. Researchers from both University of California at Los Angeles and the University of Florida successfully produced fresh water from seawater in the mid-1950s, but the flux was too low to be commercially viable[4] until the discovery at University of California at Los Angeles by Sidney Loeb and Srinivasa Sourirajan[5] at the National Research Council of Canada, Ottawa, of techniques for making asymmetric membranes characterized by an effectively thin "skin" layer supported atop a highly porous and much thicker substrate region of the membrane. John Cadotte, of FilmTec Corporation, discovered that membranes with particularly high flux and low salt passage could be made by interfacial polymerization of m-phenylene diamine and trimesoyl chloride. Cadotte's patent on this process[6] was the subject of litigation and has since expired. Almost all commercial reverse-osmosis membrane is now made by this method. By the end of 2001, about 15,200 desalination plants were in operation or in the planning stages, worldwide.[2]
Whether I've owned or rented. Country cottage, or city condo. The last one was a 2 stage G.E. undersink model which lasted about 9 years, until the filters started to get bad manufacture reviews. It's hard to find filter systems that are super quality, pro size, like the APEC WFS-1000 without going reverse osmosis. This system is the same size as a whole house filter, but made for undersink drinking water!
Only a part of the saline feed water pumped into the membrane assembly passes through the membrane with the salt removed. The remaining "concentrate" flow passes along the saline side of the membrane to flush away the concentrated salt solution. The percentage of desalinated water produced versus the saline water feed flow is known as the "recovery ratio". This varies with the salinity of the feed water and the system design parameters: typically 20% for small seawater systems, 40% – 50% for larger seawater systems, and 80% – 85% for brackish water. The concentrate flow is at typically only 3 bar / 50 psi less than the feed pressure, and thus still carries much of the high-pressure pump input energy.
In 1904, Allen Hazen showed that the efficiency of a sedimentation process was a function of the particle settling velocity, the flow through the tank and the surface area of tank. Sedimentation tanks are typically designed within a range of overflow rates of 0.5 to 1.0 gallons per minute per square foot (or 1.25 to 2.5 litres per square meter per hour). In general, sedimentation basin efficiency is not a function of detention time or depth of the basin. Although, basin depth must be sufficient so that water currents do not disturb the sludge and settled particle interactions are promoted. As particle concentrations in the settled water increase near the sludge surface on the bottom of the tank, settling velocities can increase due to collisions and agglomeration of particles. Typical detention times for sedimentation vary from 1.5 to 4 hours and basin depths vary from 10 to 15 feet (3 to 4.5 meters).[6]:9.39–9.40[7]:790–1[8]:140–2, 171
×