As with any other filter type water purification method, careful attention has to be taken to pathogen/virus and chemicals size. During hurricane Katrina a lot of the water was contaminated with petroleum based chemicals from flooded cars. What is removed from the water is dependent on the filter pore size. However, it is difficult to beat the lightweight option that water purification straws and bottles provide for most situations.
This method is effective in removing bacteria, germs, salts and other heavy metals such as lead, mercury and arsenic. Distillation is ideal for people who have access to raw, untreated water. This method has both advantages and disadvantages. A notable disadvantage is that it is a slow process of water purification. In addition, it requires a heat source for the purification to work. Although cheap sources of energy are being developed, distillation remains a costly process of purifying water. It is only ideal (effective and least costly) when purifying small quantities of water (It is not ideal for large scale, commercial or industrial purification).
It’s extremely important to confirm your water has been purified or treated before drinking. If your water is contaminated and you don’t have bottled water, there are various water purification methods that are used today, and each method has its merits and demerits. Filtering is good for basic water tasks such as sediment and chlorine removal, but in the long run reverse osmosis is the best option. At Schultz Soft Water we focus on reverse osmosis units because they require a lot less energy and time required to make water versus distillation.
Desalination – is a process by which saline water (generally sea water) is converted to fresh water. The most common desalination processes are distillation and reverse osmosis. Desalination is currently expensive compared to most alternative sources of water, and only a very small fraction of total human use is satisfied by desalination. It is only economically practical for high-valued uses (such as household and industrial uses) in arid areas.
Treatment with reverse osmosis is limited, resulting in low recoveries on high concentration (measured with electrical conductivity) and fouling of the RO membranes. Reverse osmosis applicability is limited by conductivity, organics, and scaling inorganic elements such as CaSO4, Si, Fe and Ba. Low organic scaling can use two different technologies, one is using spiral wound membrane type of module, and for high organic scaling, high conductivity and higher pressure (up to 90 bars) disc tube modules with reverse-osmosis membranes can be used. Disc tube modules were redesigned for landfill leachate purification, that is usually contaminated with high levels of organic material. Due to the cross-flow with high velocity it is given a flow booster pump, that is recirculating the flow over the same membrane surface between 1.5 and 3 times before it is released as a concentrate. High velocity is also good against membrane scaling and allows successful membrane cleaning.
As science and technology continue to improve, more efficient systems in purifying water are invented, established, and standardized. In the United States, laws are passed to ensure that businesses and corporations who manufacture and distribute water adhere to strict purification standards. Local municipalities are also held to strict standards in order to ensure that communities are given clean water consistently.

Pure water has a pH close to 7 (neither alkaline nor acidic). Sea water can have pH values that range from 7.5 to 8.4 (moderately alkaline). Fresh water can have widely ranging pH values depending on the geology of the drainage basin or aquifer and the influence of contaminant inputs (acid rain). If the water is acidic (lower than 7), lime, soda ash, or sodium hydroxide can be added to raise the pH during water purification processes. Lime addition increases the calcium ion concentration, thus raising the water hardness. For highly acidic waters, forced draft degasifiers can be an effective way to raise the pH, by stripping dissolved carbon dioxide from the water.[4] Making the water alkaline helps coagulation and flocculation processes work effectively and also helps to minimize the risk of lead being dissolved from lead pipes and from lead solder in pipe fittings. Sufficient alkalinity also reduces the corrosiveness of water to iron pipes. Acid (carbonic acid, hydrochloric acid or sulfuric acid) may be added to alkaline waters in some circumstances to lower the pH. Alkaline water (above pH 7.0) does not necessarily mean that lead or copper from the plumbing system will not be dissolved into the water. The ability of water to precipitate calcium carbonate to protect metal surfaces and reduce the likelihood of toxic metals being dissolved in water is a function of pH, mineral content, temperature, alkalinity and calcium concentration.[5]


Formally, reverse osmosis is the process of forcing a solvent from a region of high solute concentration through a semipermeable membrane to a region of low-solute concentration by applying a pressure in excess of the osmotic pressure. The largest and most important application of reverse osmosis is the separation of pure water from seawater and brackish waters; seawater or brackish water is pressurized against one surface of the membrane, causing transport of salt-depleted water across the membrane and emergence of potable drinking water from the low-pressure side.
Disinfection is accomplished both by filtering out harmful micro-organisms and by adding disinfectant chemicals. Water is disinfected to kill any pathogens which pass through the filters and to provide a residual dose of disinfectant to kill or inactivate potentially harmful micro-organisms in the storage and distribution systems. Possible pathogens include viruses, bacteria, including Salmonella, Cholera, Campylobacter and Shigella, and protozoa, including Giardia lamblia and other cryptosporidia. After the introduction of any chemical disinfecting agent, the water is usually held in temporary storage – often called a contact tank or clear well – to allow the disinfecting action to complete.

There is another method that produces fully purified water in one step, and that is distillation. A solar still can be built by digging a hole, putting an empty pan in the bottom, setting a bucket full of impure water into the middle of the pan, and then setting a peaked clear plastic sheet over top. This will evaporate the water out of the impurities, collect and condense it inside the plastic, and let it drip down into the empty pan. The problem with this method is that it is very slow and produces relatively little water.

Chlorine is a powerful chemical that has been in use for many years to treat water for home consumption. Chlorine is an effective water purification method that kills germs, parasites and other disease-causing organisms found in ground or tap water. Water can be purified using chlorine tablets or liquid chlorine. As an off-the-shelf water purification product, chlorine is cheap and effective. However, caution should be taken when using chlorine liquid or tablets to treat drinking water. For example, people suffering from thyroid problems should talk to a medical practitioner before using this product. When using chlorine tablets, it is important to apply them in heated water, as they dissolve well in water that is at 21 degree Celsius or higher. Chlorine tablets kill all bacteria leaving your water clean and safe.
×