Organic polymers were developed in the 1960s as aids to coagulants and, in some cases, as replacements for the inorganic metal salt coagulants. Synthetic organic polymers are high molecular weight compounds that carry negative, positive or neutral charges. When organic polymers are added to water with particulates, the high molecular weight compounds adsorb onto particle surfaces and through interparticle bridging coalesce with other particles to form floc. PolyDADMAC is a popular cationic (positively charged) organic polymer used in water purification plants.[7]:667–8
A process of osmosis through semipermeable membranes was first observed in 1748 by Jean-Antoine Nollet. For the following 200 years, osmosis was only a phenomenon observed in the laboratory. In 1950, the University of California at Los Angeles first investigated desalination of seawater using semipermeable membranes. Researchers from both University of California at Los Angeles and the University of Florida successfully produced fresh water from seawater in the mid-1950s, but the flux was too low to be commercially viable[4] until the discovery at University of California at Los Angeles by Sidney Loeb and Srinivasa Sourirajan[5] at the National Research Council of Canada, Ottawa, of techniques for making asymmetric membranes characterized by an effectively thin "skin" layer supported atop a highly porous and much thicker substrate region of the membrane. John Cadotte, of FilmTec Corporation, discovered that membranes with particularly high flux and low salt passage could be made by interfacial polymerization of m-phenylene diamine and trimesoyl chloride. Cadotte's patent on this process[6] was the subject of litigation and has since expired. Almost all commercial reverse-osmosis membrane is now made by this method. By the end of 2001, about 15,200 desalination plants were in operation or in the planning stages, worldwide.[2]
A reverse osmosis system is typically installed under the sink, but you can install it where your water enters the house, so all your water is filtered for contaminants. RO filter cartridges provide the most effective filtration of any water purifiers. The membrane and filters remove up to 99 percent of contaminants such as arsenic, lead, ammonia and chlorine, as well as toxic fluoride, sodium, nitrates and heavy metals. The 6 stage RO filters provide a deep filtering process, leaving you reverse osmosis water, free of sediments and toxins. RO water is perfect for drinking, cooking and making ice.
Household reverse-osmosis units use a lot of water because they have low back pressure. As a result, they recover only 5 to 15% of the water entering the system. The remainder is discharged as waste water. Because waste water carries with it the rejected contaminants, methods to recover this water are not practical for household systems. Wastewater is typically connected to the house drains and will add to the load on the household septic system. A reverse-osmosis unit delivering 19 L of treated water per day may discharge between 75–340 L of waste water daily.[25] This has a disastrous consequence for mega cities like Delhi where large-scale use of household R.O. devices has increased the total water demand of the already water parched National Capital Territory of India.[26]

The other options involve chemical agents. Hikers have long been familiar with using iodine tablets to kill microorganisms in local water sources. A typical example would be a tiny pellet being good for a quart of water. Bleach has been popular in poorer countries for decades as a means of killing microorganisms in local tap water, and works just as well with other sources. Eight drops per gallon will make the water safe to drink. Both methods should be allowed half an hour to do their job.
Bioremediation is a technique that uses microorganisms in order to remove or extract certain waste products from a contaminated area. Since 1991 bioremediation has been a suggested tactic to remove impurities from water such as alkanes, perchlorates, and metals.[26] The treatment of ground and surface water, through bioremediation, with respect to perchlorate and chloride compounds, has seen success as perchlorate compounds are highly soluble making it difficult to remove.[27] Such success by use of Dechloromonas agitata strain CKB include field studies conducted in Maryland and the Southwest region of the United States.[27][28][29] Although a bioremediation technique may be successful, implementation is not feasible as there is still much to be studied regarding rates and after effects of microbial activity as well as producing a large scale implementation method.
Gas hydrate crystals centrifuge method. If carbon dioxide or other low molecular weight gas is mixed with contaminated water at high pressure and low temperature, gas hydrate crystals will form exothermically. Separation of the crystalline hydrate may be performed by centrifuge or sedimentation and decanting. Water can be released from the hydrate crystals by heating[25]
Purifying water can be done through a variety of methods, like using a filter, treating with chemicals, or boiling. Water should be purified whenever you have reason to believe that it could be contaminated. Typically, this is necessary if you are camping in the wilderness or your home water source has been compromised. Whatever the reason, purifying water will remove any sediments and contaminants, as well as kill any germs, so that you can enjoy clean water without worrying about getting sick.
Many municipalities have moved from free chlorine to chloramine as a disinfection agent. However, chloramine appears to be a corrosive agent in some water systems. Chloramine can dissolve the "protective" film inside older service lines, leading to the leaching of lead into residential spigots. This can result in harmful exposure, including elevated blood lead levels. Lead is a known neurotoxin.[31]

Found on small or moderate-size streams and rivers, low-head dams are used to regulate water flow or prevent invasive species from swimming upstream. But watch out. "They're called drowning machines because they could not be designed better to drown people," says Kevin Colburn of American Whitewater, a nonprofit whitewater preservation group. To a boater heading downstream, the dams look like a single line of flat reflective water. But water rushing over the dam creates a spinning cylinder of water that can trap a capsized boater.
Reverse osmosis: Mechanical pressure is applied to an impure solution to force pure water through a semi-permeable membrane. Reverse osmosis is theoretically the most thorough method of large scale water purification available, although perfect semi-permeable membranes are difficult to create. Unless membranes are well-maintained, algae and other life forms can colonize the membranes.
If you want to take a long swim underwater, the trick is to breathe in and out a few times and take a big gulp of air before you submerge. Right? Dead wrong. Hyperventilating not only doesn't increase the oxygen in your blood, it also decreases the amount of CO2, the compound that informs the brain of the need to breathe. Without that natural signal, you may hold your breath until you pass out and drown. This is known as shallow-water blackout.

The remineralization stage is an additional feature of this water purifier. The name itself explains the function of this stage. After passing through the basic 5 stages of filtration the water is treated in the remineralization stage. At this point of purification, some advantageous minerals restored into the water again. The added minerals improve the taste and raise the pH to more alkaline. You will definitely enjoy the fresher tasting mineral water.