Desalination – is a process by which saline water (generally sea water) is converted to fresh water. The most common desalination processes are distillation and reverse osmosis. Desalination is currently expensive compared to most alternative sources of water, and only a very small fraction of total human use is satisfied by desalination. It is only economically practical for high-valued uses (such as household and industrial uses) in arid areas.
A reverse osmosis system is typically installed under the sink, but you can install it where your water enters the house, so all your water is filtered for contaminants. RO filter cartridges provide the most effective filtration of any water purifiers. The membrane and filters remove up to 99 percent of contaminants such as arsenic, lead, ammonia and chlorine, as well as toxic fluoride, sodium, nitrates and heavy metals. The 6 stage RO filters provide a deep filtering process, leaving you reverse osmosis water, free of sediments and toxins. RO water is perfect for drinking, cooking and making ice.

• Snow: The energy it requires for your body to absorb the water from snow is high. Instead of eating the snow, melt it first. This can easily be done over a fire or with a camp stove. If those aren’t options, use the sun. Accelerate the process by chopping up ice and hanging it in a water bag in direct sunlight. If there’s no sun, use your body’s heat.
In 1977 Cape Coral, Florida became the first municipality in the United States to use the RO process on a large scale with an initial operating capacity of 11.35 million liters (3 million US gal) per day. By 1985, due to the rapid growth in population of Cape Coral, the city had the largest low-pressure reverse-osmosis plant in the world, capable of producing 56.8 million liters (15 million US gal) per day (MGD).[7]
The EPA states that there are four main types of contaminants to be found in water. The Safe Drinking Water Act (SDWA), a federal law that protects public drinking water supplies, defines "contaminant" as anything other than water molecules. We can reasonably expect most drinking water to contain some level of contaminant, especially since minerals such as calcium and magnesium fall into that category. The question is, which of these contaminants are harmful and how much of it is entering my system?
The practice of water treatment soon became mainstream and common, and the virtues of the system were made starkly apparent after the investigations of the physician John Snow during the 1854 Broad Street cholera outbreak. Snow was sceptical of the then-dominant miasma theory that stated that diseases were caused by noxious "bad airs". Although the germ theory of disease had not yet been developed, Snow's observations led him to discount the prevailing theory. His 1855 essay On the Mode of Communication of Cholera conclusively demonstrated the role of the water supply in spreading the cholera epidemic in Soho,[39][40] with the use of a dot distribution map and statistical proof to illustrate the connection between the quality of the water source and cholera cases. His data convinced the local council to disable the water pump, which promptly ended the outbreak.
This method is effective in removing bacteria, germs, salts and other heavy metals such as lead, mercury and arsenic. Distillation is ideal for people who have access to raw, untreated water. This method has both advantages and disadvantages. A notable disadvantage is that it is a slow process of water purification. In addition, it requires a heat source for the purification to work. Although cheap sources of energy are being developed, distillation remains a costly process of purifying water. It is only ideal (effective and least costly) when purifying small quantities of water (It is not ideal for large scale, commercial or industrial purification).
Iodine tastes just like it smells, fortunately, this is a pretty weak solution, so the taste is not overpowering; it is only slightly worse than city water. The advantages of iodine crystals, is that, one container can treat somewhere in the neighborhood of 10,000 gallons. As well as the fact that, it prepares the water relatively fast. The disadvantage is, as mentioned above, that it is harmful in the long term.
Upland lakes and reservoirs: Typically located in the headwaters of river systems, upland reservoirs are usually sited above any human habitation and may be surrounded by a protective zone to restrict the opportunities for contamination. Bacteria and pathogen levels are usually low, but some bacteria, protozoa or algae will be present. Where uplands are forested or peaty, humic acids can colour the water. Many upland sources have low pH which require adjustment.
Bioremediation is a technique that uses microorganisms in order to remove or extract certain waste products from a contaminated area. Since 1991 bioremediation has been a suggested tactic to remove impurities from water such as alkanes, perchlorates, and metals.[26] The treatment of ground and surface water, through bioremediation, with respect to perchlorate and chloride compounds, has seen success as perchlorate compounds are highly soluble making it difficult to remove.[27] Such success by use of Dechloromonas agitata strain CKB include field studies conducted in Maryland and the Southwest region of the United States.[27][28][29] Although a bioremediation technique may be successful, implementation is not feasible as there is still much to be studied regarding rates and after effects of microbial activity as well as producing a large scale implementation method.
Slow sand filters may be used where there is sufficient land and space, as the water flows very slowly through the filters. These filters rely on biological treatment processes for their action rather than physical filtration. They are carefully constructed using graded layers of sand, with the coarsest sand, along with some gravel, at the bottom and finest sand at the top. Drains at the base convey treated water away for disinfection. Filtration depends on the development of a thin biological layer, called the zoogleal layer or Schmutzdecke, on the surface of the filter. An effective slow sand filter may remain in service for many weeks or even months, if the pretreatment is well designed, and produces water with a very low available nutrient level which physical methods of treatment rarely achieve. Very low nutrient levels allow water to be safely sent through distribution systems with very low disinfectant levels, thereby reducing consumer irritation over offensive levels of chlorine and chlorine by-products. Slow sand filters are not backwashed; they are maintained by having the top layer of sand scraped off when flow is eventually obstructed by biological growth.[10]
Chlorine is a powerful chemical that has been in use for many years to treat water for home consumption. Chlorine is an effective water purification method that kills germs, parasites and other disease-causing organisms found in ground or tap water. Water can be purified using chlorine tablets or liquid chlorine. As an off-the-shelf water purification product, chlorine is cheap and effective. However, caution should be taken when using chlorine liquid or tablets to treat drinking water. For example, people suffering from thyroid problems should talk to a medical practitioner before using this product. When using chlorine tablets, it is important to apply them in heated water, as they dissolve well in water that is at 21 degree Celsius or higher. Chlorine tablets kill all bacteria leaving your water clean and safe.