If the right equipment is available distillation is another way to ensure removal of bacteria and viruses. This is one method that will allow us to use salt water for drinking. Note: If you own a boat and use it for off shore trips a desalinator such as the Katadyn Survivor series would be a prudent purchase. The Katadyn Survivor 40E can be operated manually or using 12/24 V DC power. We will cover makeshift ways of distillation in future articles.
On May 20, 2013, Kyle McGonigle was on a dock on Kentucky's Rough River Lake. A dog swimming nearby yelped, and McGonigle, 36, saw that it was struggling to stay above water. He dove in to save the dog, but both he and the animal drowned, victims of electric-shock drowning (ESD). Cords plugged into an outlet on the dock had slipped into the water and electrified it.
The high pressure pump supplies the pressure needed to push water through the membrane, even as the membrane rejects the passage of salt through it. Typical pressures for brackish water range from 1.6 to 2.6 MPa (225 to 376 psi). In the case of seawater, they range from 5.5 to 8 MPa (800 to 1,180 psi). This requires a large amount of energy. Where energy recovery is used, part of the high pressure pump's work is done by the energy recovery device, reducing the system energy inputs.
Advantage is that you are not adding any chemicals to your water, which takes out the guess work as far as dosage. The disadvantage, if it can even be called that, is that you have to have a source of heat(fire, stove, etc.) in order to bring the water to the boiling point. Also we have to remember that this does not remove chemical such as petroleum or pesticides which can be harmful as well.
Different RO water filter systems handle a different number of purified gallons in a day. Normally this capacity goes from 50 to 150 Gallons per day and so on. You must identify the amount of water your family needs in a day. For Small families, reverse osmosis with 50 Gallons per day capacity is suggested while for larger families, Whole house Ro system with minimum 75-100 GPD is suggested.
Bioremediation is a technique that uses microorganisms in order to remove or extract certain waste products from a contaminated area. Since 1991 bioremediation has been a suggested tactic to remove impurities from water such as alkanes, perchlorates, and metals.[26] The treatment of ground and surface water, through bioremediation, with respect to perchlorate and chloride compounds, has seen success as perchlorate compounds are highly soluble making it difficult to remove.[27] Such success by use of Dechloromonas agitata strain CKB include field studies conducted in Maryland and the Southwest region of the United States.[27][28][29] Although a bioremediation technique may be successful, implementation is not feasible as there is still much to be studied regarding rates and after effects of microbial activity as well as producing a large scale implementation method.
The remineralization stage is an additional feature of this water purifier. The name itself explains the function of this stage. After passing through the basic 5 stages of filtration the water is treated in the remineralization stage. At this point of purification, some advantageous minerals restored into the water again. The added minerals improve the taste and raise the pH to more alkaline. You will definitely enjoy the fresher tasting mineral water. 

Only a part of the saline feed water pumped into the membrane assembly passes through the membrane with the salt removed. The remaining "concentrate" flow passes along the saline side of the membrane to flush away the concentrated salt solution. The percentage of desalinated water produced versus the saline water feed flow is known as the "recovery ratio". This varies with the salinity of the feed water and the system design parameters: typically 20% for small seawater systems, 40% – 50% for larger seawater systems, and 80% – 85% for brackish water. The concentrate flow is at typically only 3 bar / 50 psi less than the feed pressure, and thus still carries much of the high-pressure pump input energy.
Some small-scale desalination units use 'beach wells'; they are usually drilled on the seashore in close vicinity to the ocean. These intake facilities are relatively simple to build and the seawater they collect is pretreated via slow filtration through the subsurface sand/seabed formations in the area of source water extraction. Raw seawater collected using beach wells is often of better quality in terms of solids, silt, oil and grease, natural organic contamination and aquatic microorganisms, compared to open seawater intakes. Sometimes, beach intakes may also yield source water of lower salinity.
Water Waste Unlike traditional water filters, not all of the water that is pumped through a reverse osmosis filter comes out the other side as drinkable water. Only a relatively small percentage—50 percent or less—is filtered, and the rest is considered waste. When possible, avoid units with 75 percent or more waste, especially if you are treating a high volume of water per day.
The first part of the purification tag team must eliminate microorganisms, like harmful bacteria and parasites. There are a handful of tried and true methods for doing this. The most familiar is boiling. Simply bringing water up to its boiling point of 212 degrees Fahrenheit will kill almost all microorganisms, so just a few minutes of boiling will do the job.
Prefiltration antiscalants: Scale inhibitors (also known as antiscalants) prevent formation of all scales compared to acid, which can only prevent formation of calcium carbonate and calcium phosphate scales. In addition to inhibiting carbonate and phosphate scales, antiscalants inhibit sulfate and fluoride scales and disperse colloids and metal oxides. Despite claims that antiscalants can inhibit silica formation, no concrete evidence proves that silica polymerization can be inhibited by antiscalants. Antiscalants can control acid-soluble scales at a fraction of the dosage required to control the same scale using sulfuric acid.[23]
In recent years, energy consumption has dropped to around 3 kWh/m3, with the development of more efficient energy recovery devices and improved membrane materials. According to the International Desalination Association, for 2011, reverse osmosis was used in 66% of installed desalination capacity (0.0445 of 0.0674 km³/day), and nearly all new plants.[19] Other plants mainly use thermal distillation methods: multiple-effect distillation and multi-stage flash.
Distillation involves boiling the water to produce water vapour. The vapour contacts a cool surface where it condenses as a liquid. Because the solutes are not normally vaporised, they remain in the boiling solution. Even distillation does not completely purify water, because of contaminants with similar boiling points and droplets of unvapourised liquid carried with the steam. However, 99.9% pure water can be obtained by distillation.
One way to disinfect water through solar purification is through the use of plastic bottles and sunlight. Remove all labels and paper from the bottles and ensure they have no scratches. Fill them with water to about three quarters full, shake for a half-minute to activate the oxygen, fill with water to the brim, cover, and then lay it horizontally and expose to direct sunlight (Water Benefits Health).
The reverse osmosis membrane of this system is equipped to process 75 gallons of water per day. Like other popular iSpring reverse osmosis systems, the RCC7AK-UV can easily be mounted under the sink. For the greatest peace of mind when drinking well water, take advantage of the purification power of reverse osmosis combined with the sterilization of UV light in this water filtration system.

In the normal osmosis process, the solvent naturally moves from an area of low solute concentration (high water potential), through a membrane, to an area of high solute concentration (low water potential). The driving force for the movement of the solvent is the reduction in the free energy of the system when the difference in solvent concentration on either side of a membrane is reduced, generating osmotic pressure due to the solvent moving into the more concentrated solution. Applying an external pressure to reverse the natural flow of pure solvent, thus, is reverse osmosis. The process is similar to other membrane technology applications.
A specific "large-scale" form of slow sand filter is the process of bank filtration, in which natural sediments in a riverbank are used to provide a first stage of contaminant filtration. While typically not clean enough to be used directly for drinking water, the water gained from the associated extraction wells is much less problematic than river water taken directly from the river.
Different RO water filter systems handle a different number of purified gallons in a day. Normally this capacity goes from 50 to 150 Gallons per day and so on. You must identify the amount of water your family needs in a day. For Small families, reverse osmosis with 50 Gallons per day capacity is suggested while for larger families, Whole house Ro system with minimum 75-100 GPD is suggested.
There are multiple built in filters water bottles choices. Vestergaard's Lifestraw Go and Sawyers Personal Water Bottle are two examples. The Lifestraw Go filters specs say it will filter up to 1,000 liters (264 gallons) of water down to particulate matter larger than 0.2 microns Source Sawyer's Personal Water bottle absolute hollow fiber membrane inline filter down to 0.1 micron. Source

Organic polymers were developed in the 1960s as aids to coagulants and, in some cases, as replacements for the inorganic metal salt coagulants. Synthetic organic polymers are high molecular weight compounds that carry negative, positive or neutral charges. When organic polymers are added to water with particulates, the high molecular weight compounds adsorb onto particle surfaces and through interparticle bridging coalesce with other particles to form floc. PolyDADMAC is a popular cationic (positively charged) organic polymer used in water purification plants.[7]:667–8
The addition of inorganic coagulants such as aluminum sulfate (or alum) or iron (III) salts such as iron(III) chloride cause several simultaneous chemical and physical interactions on and among the particles. Within seconds, negative charges on the particles are neutralized by inorganic coagulants. Also within seconds, metal hydroxide precipitates of the iron and aluminium ions begin to form. These precipitates combine into larger particles under natural processes such as Brownian motion and through induced mixing which is sometimes referred to as flocculation. Amorphous metal hydroxides are known as "floc". Large, amorphous aluminum and iron (III) hydroxides adsorb and enmesh particles in suspension and facilitate the removal of particles by subsequent processes of sedimentation and filtration.[6]:8.2–8.3