There are multiple built in filters water bottles choices. Vestergaard's Lifestraw Go and Sawyers Personal Water Bottle are two examples. The Lifestraw Go filters specs say it will filter up to 1,000 liters (264 gallons) of water down to particulate matter larger than 0.2 microns Source Sawyer's Personal Water bottle absolute hollow fiber membrane inline filter down to 0.1 micron. Source
There is another method that produces fully purified water in one step, and that is distillation. A solar still can be built by digging a hole, putting an empty pan in the bottom, setting a bucket full of impure water into the middle of the pan, and then setting a peaked clear plastic sheet over top. This will evaporate the water out of the impurities, collect and condense it inside the plastic, and let it drip down into the empty pan. The problem with this method is that it is very slow and produces relatively little water.

It occurred to me that chlorine gas might be found satisfactory ... if suitable means could be found for using it.... The next important question was how to render the gas portable. This might be accomplished in two ways: By liquefying it, and storing it in lead-lined iron vessels, having a jet with a very fine capillary canal, and fitted with a tap or a screw cap. The tap is turned on, and the cylinder placed in the amount of water required. The chlorine bubbles out, and in ten to fifteen minutes the water is absolutely safe. This method would be of use on a large scale, as for service water carts.[49]
Many reef aquarium keepers use reverse osmosis systems for their artificial mixture of seawater. Ordinary tap water can contain excessive chlorine, chloramines, copper, nitrates, nitrites, phosphates, silicates, or many other chemicals detrimental to the sensitive organisms in a reef environment. Contaminants such as nitrogen compounds and phosphates can lead to excessive and unwanted algae growth. An effective combination of both reverse osmosis and deionization is the most popular among reef aquarium keepers, and is preferred above other water purification processes due to the low cost of ownership and minimal operating costs. Where chlorine and chloramines are found in the water, carbon filtration is needed before the membrane, as the common residential membrane used by reef keepers does not cope with these compounds.
Remineralization stage adds back some beneficial minerals such as magnesium, calcium, and potassium to the purified water. This process is introduced to overcome the problem of acidic water. This addition of minerals gives the taste back to the water, which is removed in final filters. Remineralization enhanced the experience of purified water but it also makes the water more alkaline and less acidic.
When particles to be removed do not settle out of solution easily, dissolved air flotation (DAF) is often used. After coagulation and flocculation processes, water flows to DAF tanks where air diffusers on the tank bottom create fine bubbles that attach to floc resulting in a floating mass of concentrated floc. The floating floc blanket is removed from the surface and clarified water is withdrawn from the bottom of the DAF tank. Water supplies that are particularly vulnerable to unicellular algae blooms and supplies with low turbidity and high colour often employ DAF.[6]:9.46
In the production of bottled mineral water, the water passes through a reverse osmosis water processor to remove pollutants and microorganisms. In European countries, though, such processing of natural mineral water (as defined by a European directive[10]) is not allowed under European law. In practice, a fraction of the living bacteria can and do pass through reverse osmosis membranes through minor imperfections, or bypass the membrane entirely through tiny leaks in surrounding seals. Thus, complete reverse osmosis systems may include additional water treatment stages that use ultraviolet light or ozone to prevent microbiological contamination.
The desalinated water is stabilized to protect downstream pipelines and storage, usually by adding lime or caustic soda to prevent corrosion of concrete-lined surfaces. Liming material is used to adjust pH between 6.8 and 8.1 to meet the potable water specifications, primarily for effective disinfection and for corrosion control. Remineralisation may be needed to replace minerals removed from the water by desalination. Although this process has proved to be costly and not very convenient if it is intended to meet mineral demand by humans and plants. The very same mineral demand that freshwater sources provided previously. For instance water from Israel's national water carrier typically contains dissolved magnesium levels of 20 to 25 mg/liter, while water from the Ashkelon plant has no magnesium. After farmers used this water, magnesium-deficiency symptoms appeared in crops, including tomatoes, basil, and flowers, and had to be remedied by fertilization. Current Israeli drinking water standards set a minimum calcium level of 20 mg/liter. The postdesalination treatment in the Ashkelon plant uses sulfuric acid to dissolve calcite (limestone), resulting in calcium concentration of 40 to 46 mg/liter. This is still lower than the 45 to 60 mg/liter found in typical Israeli fresh water.
Slow sand filters may be used where there is sufficient land and space, as the water flows very slowly through the filters. These filters rely on biological treatment processes for their action rather than physical filtration. They are carefully constructed using graded layers of sand, with the coarsest sand, along with some gravel, at the bottom and finest sand at the top. Drains at the base convey treated water away for disinfection. Filtration depends on the development of a thin biological layer, called the zoogleal layer or Schmutzdecke, on the surface of the filter. An effective slow sand filter may remain in service for many weeks or even months, if the pretreatment is well designed, and produces water with a very low available nutrient level which physical methods of treatment rarely achieve. Very low nutrient levels allow water to be safely sent through distribution systems with very low disinfectant levels, thereby reducing consumer irritation over offensive levels of chlorine and chlorine by-products. Slow sand filters are not backwashed; they are maintained by having the top layer of sand scraped off when flow is eventually obstructed by biological growth.[10]

Filter Speed While there are reverse osmosis filters that can filter water as you need it, most of them take some time to refill. If you are replacing your regular tap water with purified water, look for a unit that can filter 50 or more gallons a day. If you're just using it for drinking water, you can opt for a unit with a slower refill rate and a smaller tank.
After installation, you have to fill and empty the tank to make it active. Normally you have filled and empty for 3-4 times but it depends on the system. You can check out how much water wastage is required from your instructional manual. This step in crucial. You will not have the safer, cleaner healthier purified water until you complete the last step.
The simplest levels of filtration can be achieved by running the water through a cloth. The tighter the weave of the cloth the better it will filter water, as it will be able to capture smaller/finer particles. Just about any cloth will catch the “big” stuff. Folding the cloth to form multiple layers will help in this process. If you are setting up a long term camp, you can set up a more intricate filtration system, that will not only filter particulates, but also improve taste.

It isn’t the most affordable system, but it does reduce wastewater compared to many other systems. For every 1 gallon of purified water, there is just 1 gallon of wastewater, thanks in part to the permeate pump. Maintenance is easy for this reverse osmosis system—you’ll only need to change the filter once per year or every 2,000 gallons. So pour yourself a glass of clear, clean water and drink with peace of mind thanks to the Home Maker Full Contact Reverse Osmosis System!
STAT: The number of annual deaths from ESD in the U.S. are unknown, since they are counted among all drownings. But anecdotal evidence shows that ESD is widespread. ESD prevention groups have successfully urged some states to enact safety standards, including the installation of ground-fault circuit interrupters and a central shutoff for a dock's electrical system.