Accidental shootings are an obvious hazard of hunting, but guess what's just as bad: trees. "A tree stand hung 20 feet in the air should be treated like a loaded gun, because it is every bit as dangerous," says Marilyn Bentz, executive director of the National Bow hunter Educational Foundation. Most tree-stand accidents occur while a hunter is climbing, she says.
Water filters can come in smaller, portable forms which are convenient for travel and outdoor activities. Those who go hiking and backpacking often come across bodies of fresh water such lakes and rivers. While lakes and rivers are considered fresh in comparison to the seawater, they still need to be filtered before drinking due to the presence of sediment and potential bacteria. Having a portable water filter handy will eliminate the worry of ingesting harmful contaminants such as bacteria, parasites, sedimentary rock. Read our article on portable water filters for a detailed guide on how they work and which brands to use.
This system can purify up to 50 gallons of water per day and has 5 stages of filtration to remove up to 99 percent of TDS. For every gallon of purified water produced, there are 3 gallons of wastewater. This is an average conversion rate and is much better than some water filtration systems that have 4 or 5 gallons of wastewater for every purified gallon produced.
The first experiments into water filtration were made in the 17th century. Sir Francis Bacon attempted to desalinate sea water by passing the flow through a sand filter. Although his experiment did not succeed, it marked the beginning of a new interest in the field. The fathers of microscopy, Antonie van Leeuwenhoek and Robert Hooke, used the newly invented microscope to observe for the first time small material particles that lay suspended in the water, laying the groundwork for the future understanding of waterborne pathogens.[36]
A process of osmosis through semipermeable membranes was first observed in 1748 by Jean-Antoine Nollet. For the following 200 years, osmosis was only a phenomenon observed in the laboratory. In 1950, the University of California at Los Angeles first investigated desalination of seawater using semipermeable membranes. Researchers from both University of California at Los Angeles and the University of Florida successfully produced fresh water from seawater in the mid-1950s, but the flux was too low to be commercially viable[4] until the discovery at University of California at Los Angeles by Sidney Loeb and Srinivasa Sourirajan[5] at the National Research Council of Canada, Ottawa, of techniques for making asymmetric membranes characterized by an effectively thin "skin" layer supported atop a highly porous and much thicker substrate region of the membrane. John Cadotte, of FilmTec Corporation, discovered that membranes with particularly high flux and low salt passage could be made by interfacial polymerization of m-phenylene diamine and trimesoyl chloride. Cadotte's patent on this process[6] was the subject of litigation and has since expired. Almost all commercial reverse-osmosis membrane is now made by this method. By the end of 2001, about 15,200 desalination plants were in operation or in the planning stages, worldwide.[2]

That brings us to filtration by manufactured filters. These devices allow us to go into microfiltration and ultrafiltration. By simply running the water through these porous ceramic filters we can effectively remove bacteria and viruses depending on the quality of the filter and the pore size. See chart above. This is where high quality filters such as the Katadyn Combi Filter can filter down to 0.2-micron level capturing Giardia, Crypto, bacteria and most viruses. Some filters are chemically impregnated to ensure complete removal of bacteria. The information below will give more detail.
Waters exiting the flocculation basin may enter the sedimentation basin, also called a clarifier or settling basin. It is a large tank with low water velocities, allowing floc to settle to the bottom. The sedimentation basin is best located close to the flocculation basin so the transit between the two processes does not permit settlement or floc break up. Sedimentation basins may be rectangular, where water flows from end to end, or circular where flow is from the centre outward. Sedimentation basin outflow is typically over a weir so only a thin top layer of water—that furthest from the sludge—exits.
Whether you are on a backpacking trip or find yourself in an unplanned emergency situation our first goal is to locate water. Depending on the location this may prove more difficult than ensuring it's potability. Make sure you are familiar with water sources in the area you plan to travel. Looking at topographical maps is always a good idea. Depending on the dates of the map this could help you find water while backpacking. As with other areas of emergency preparedness, make sure to have a backup plan. Water sources can change with time and seasonal changes. Another important aspect of finding water is the lay of the land. Learning the elevational changes of the area and thinking which way the water would travel during a rain can be another way to locate a water source. For the scope of this article, we will assume that a source has been located.

As with any other filter type water purification method, careful attention has to be taken to pathogen/virus and chemicals size. During hurricane Katrina a lot of the water was contaminated with petroleum based chemicals from flooded cars. What is removed from the water is dependent on the filter pore size. However, it is difficult to beat the lightweight option that water purification straws and bottles provide for most situations.

×