Disinfection is accomplished both by filtering out harmful micro-organisms and by adding disinfectant chemicals. Water is disinfected to kill any pathogens which pass through the filters and to provide a residual dose of disinfectant to kill or inactivate potentially harmful micro-organisms in the storage and distribution systems. Possible pathogens include viruses, bacteria, including Salmonella, Cholera, Campylobacter and Shigella, and protozoa, including Giardia lamblia and other cryptosporidia. After the introduction of any chemical disinfecting agent, the water is usually held in temporary storage – often called a contact tank or clear well – to allow the disinfecting action to complete.

Plumbosolvency reduction: In areas with naturally acidic waters of low conductivity (i.e. surface rainfall in upland mountains of igneous rocks), the water may be capable of dissolving lead from any lead pipes that it is carried in. The addition of small quantities of phosphate ion and increasing the pH slightly both assist in greatly reducing plumbo-solvency by creating insoluble lead salts on the inner surfaces of the pipes.
Ozone has been used in drinking water plants since 1906 where the first industrial ozonation plant was built in Nice, France. The U.S. Food and Drug Administration has accepted ozone as being safe; and it is applied as an anti-microbiological agent for the treatment, storage, and processing of foods. However, although fewer by-products are formed by ozonation, it has been discovered that ozone reacts with bromide ions in water to produce concentrations of the suspected carcinogen bromate. Bromide can be found in fresh water supplies in sufficient concentrations to produce (after ozonation) more than 10 parts per billion (ppb) of bromate — the maximum contaminant level established by the USEPA.[14] Ozone disinfection is also energy intensive.
Advantage is that you are not adding any chemicals to your water, which takes out the guess work as far as dosage. The disadvantage, if it can even be called that, is that you have to have a source of heat(fire, stove, etc.) in order to bring the water to the boiling point. Also we have to remember that this does not remove chemical such as petroleum or pesticides which can be harmful as well.
Some water supplies may also contain disinfections by-products, inorganic chemicals, organic chemicals, and radionuclides. Specialized methods for controlling formation or removing them can also be part of water treatment. To learn more about the different treatments for drinking water, see the National Drinking Water Clearinghouse’s Fact Sheet Series on Drinking Water TreatmentsExternal.
Compared to reverse osmosis, filtration is considered effective when it comes to selective elimination of much smaller molecular compounds such as chlorine and pesticides. The other factor that makes filtration less costly is that it does not require a lot of energy needed in distillation and reverse osmosis. It is an economic method of water purification because little water is lost during purification.
An increasingly popular method of cleaning windows is the so-called "water-fed pole" system. Instead of washing the windows with detergent in the conventional way, they are scrubbed with highly purified water, typically containing less than 10 ppm dissolved solids, using a brush on the end of a long pole which is wielded from ground level. Reverse osmosis is commonly used to purify the water.
We all know that dehydration can be dangerous, leading to dizziness, seizures, and death, but drinking too much water can be just as bad. In 2002, 28-year-old runner Cynthia Lucero collapsed midway through the Boston Marathon. Rushed to a hospital, she fell into a coma and died. In the aftermath it emerged that she had drunk large amounts along the run. The excess liquid in her system induced a syndrome called exercise-associated hyponatremia (EAH), in which an imbalance in the body's sodium levels creates a dangerous swelling of the brain.
Household reverse-osmosis units use a lot of water because they have low back pressure. As a result, they recover only 5 to 15% of the water entering the system. The remainder is discharged as waste water. Because waste water carries with it the rejected contaminants, methods to recover this water are not practical for household systems. Wastewater is typically connected to the house drains and will add to the load on the household septic system. A reverse-osmosis unit delivering 19 L of treated water per day may discharge between 75–340 L of waste water daily.[25] This has a disastrous consequence for mega cities like Delhi where large-scale use of household R.O. devices has increased the total water demand of the already water parched National Capital Territory of India.[26]
Radium Removal: Some groundwater sources contain radium, a radioactive chemical element. Typical sources include many groundwater sources north of the Illinois River in Illinois, United States of America. Radium can be removed by ion exchange, or by water conditioning. The back flush or sludge that is produced is, however, a low-level radioactive waste.

Use water purification and disinfection tablets. Water purification tablets are made of either chlorine dioxide or iodine and kill bacteria and viruses in water. To use these tablets, fill a pitcher or jar with water and add enough tablets to treat the water. One tablet typically treats 1 quart (1 L) of water. These tablets generally need anywhere from 30 minutes to four hours to work.[4]
Ultraviolet light (UV) is very effective at inactivating cysts, in low turbidity water. UV light's disinfection effectiveness decreases as turbidity increases, a result of the absorption, scattering, and shadowing caused by the suspended solids. The main disadvantage to the use of UV radiation is that, like ozone treatment, it leaves no residual disinfectant in the water; therefore, it is sometimes necessary to add a residual disinfectant after the primary disinfection process. This is often done through the addition of chloramines, discussed above as a primary disinfectant. When used in this manner, chloramines provide an effective residual disinfectant with very few of the negative effects of chlorination.
Assuming you can get a fire going, and have a metal container. After filtering as many of the particulates as possible. Fill your container with water, place over the fire, bring to a rapid boil, then allow to cool (drinking hot water can induce vomiting). Boiling will kill the harmful bacteria in the water, as they cannot withstand the temperature.
Many municipalities have moved from free chlorine to chloramine as a disinfection agent. However, chloramine appears to be a corrosive agent in some water systems. Chloramine can dissolve the "protective" film inside older service lines, leading to the leaching of lead into residential spigots. This can result in harmful exposure, including elevated blood lead levels. Lead is a known neurotoxin.[31]
A subcategory of sedimentation is the removal of particulates by entrapment in a layer of suspended floc as the water is forced upward. The major advantage of floc blanket clarifiers is that they occupy a smaller footprint than conventional sedimentation. Disadvantages are that particle removal efficiency can be highly variable depending on changes in influent water quality and influent water flow rate.[7]:835–6

Reverse osmosis is extensively used in the dairy industry for the production of whey protein powders and for the concentration of milk to reduce shipping costs. In whey applications, the whey (liquid remaining after cheese manufacture) is concentrated with reverse osmosis from 6% total solids to 10–20% total solids before ultrafiltration processing. The ultrafiltration retentate can then be used to make various whey powders, including whey protein isolate. Additionally, the ultrafiltration permeate, which contains lactose, is concentrated by reverse osmosis from 5% total solids to 18–22% total solids to reduce crystallization and drying costs of the lactose powder.
Use water purification and disinfection tablets. Water purification tablets are made of either chlorine dioxide or iodine and kill bacteria and viruses in water. To use these tablets, fill a pitcher or jar with water and add enough tablets to treat the water. One tablet typically treats 1 quart (1 L) of water. These tablets generally need anywhere from 30 minutes to four hours to work.[4]

Depending upon the desired product, either the solvent or solute stream of reverse osmosis will be waste. For food concentration applications, the concentrated solute stream is the product and the solvent stream is waste. For water treatment applications, the solvent stream is purified water and the solute stream is concentrated waste.[28] The solvent waste stream from food processing may be used as reclaimed water, but there may be fewer options for disposal of a concentrated waste solute stream. Ships may use marine dumping and coastal desalination plants typically use marine outfalls. Landlocked reverse osmosis plants may require evaporation ponds or injection wells to avoid polluting groundwater or surface runoff.[29]
Found on small or moderate-size streams and rivers, low-head dams are used to regulate water flow or prevent invasive species from swimming upstream. But watch out. "They're called drowning machines because they could not be designed better to drown people," says Kevin Colburn of American Whitewater, a nonprofit whitewater preservation group. To a boater heading downstream, the dams look like a single line of flat reflective water. But water rushing over the dam creates a spinning cylinder of water that can trap a capsized boater.
While reverse osmosis systems are widely used for industrial and commercial purposes, smaller home units can be purchased and installed under the kitchen sink and dispensed through the faucet. Home RO units typically run on a 3-stage system which includes a carbon filter, RO membrane, and re-mineralizing filter for taste. Some systems can include 5, 7, or even 10 stages. While the additional stages offer extra benefits such as pH level balance and UV filtration, a simple 3-stage system has everything required to produce pure, drinkable water. RO systems require frequent maintenance and replacement of filters in order to keep it functioning properly. Read our article on reverse osmosis systems for home use for a detailed guide on how they work and which brands to use.

Radium Removal: Some groundwater sources contain radium, a radioactive chemical element. Typical sources include many groundwater sources north of the Illinois River in Illinois, United States of America. Radium can be removed by ion exchange, or by water conditioning. The back flush or sludge that is produced is, however, a low-level radioactive waste.
×