Radium Removal: Some groundwater sources contain radium, a radioactive chemical element. Typical sources include many groundwater sources north of the Illinois River in Illinois, United States of America. Radium can be removed by ion exchange, or by water conditioning. The back flush or sludge that is produced is, however, a low-level radioactive waste.
Chlorine is effective against bacteria and most viruses. Norovirus, an intestinal disease that causes diarrhea, is particularly resistant to chlorine and will require the water to sit twice as long instead of the standard 30 minutes before consumption. Giardia, a parasite with a protective coating, will survive in chlorine treated water for 45 minutes before its safe to drink.
While reverse osmosis systems are widely used for industrial and commercial purposes, smaller home units can be purchased and installed under the kitchen sink and dispensed through the faucet. Home RO units typically run on a 3-stage system which includes a carbon filter, RO membrane, and re-mineralizing filter for taste. Some systems can include 5, 7, or even 10 stages. While the additional stages offer extra benefits such as pH level balance and UV filtration, a simple 3-stage system has everything required to produce pure, drinkable water. RO systems require frequent maintenance and replacement of filters in order to keep it functioning properly. Read our article on reverse osmosis systems for home use for a detailed guide on how they work and which brands to use.
In a paper published in 1894, Moritz Traube formally proposed the addition of chloride of lime (calcium hypochlorite) to water to render it "germ-free." Two other investigators confirmed Traube's findings and published their papers in 1895.[42] Early attempts at implementing water chlorination at a water treatment plant were made in 1893 in Hamburg, Germany and in 1897 the city of Maidstone, England was the first to have its entire water supply treated with chlorine.[43]

Plumbosolvency reduction: In areas with naturally acidic waters of low conductivity (i.e. surface rainfall in upland mountains of igneous rocks), the water may be capable of dissolving lead from any lead pipes that it is carried in. The addition of small quantities of phosphate ion and increasing the pH slightly both assist in greatly reducing plumbo-solvency by creating insoluble lead salts on the inner surfaces of the pipes.

A reverse osmosis system is typically installed under the sink, but you can install it where your water enters the house, so all your water is filtered for contaminants. RO filter cartridges provide the most effective filtration of any water purifiers. The membrane and filters remove up to 99 percent of contaminants such as arsenic, lead, ammonia and chlorine, as well as toxic fluoride, sodium, nitrates and heavy metals. The 6 stage RO filters provide a deep filtering process, leaving you reverse osmosis water, free of sediments and toxins. RO water is perfect for drinking, cooking and making ice.

Post-treatment consists of preparing the water for distribution after filtration. Reverse osmosis is an effective barrier to pathogens, but post-treatment provides secondary protection against compromised membranes and downstream problems. Disinfection by means of ultraviolet (UV) lamps (sometimes called germicidal or bactericidal) may be employed to sterilize pathogens which bypassed the reverse-osmosis process. Chlorination or chloramination (chlorine and ammonia) protects against pathogens which may have lodged in the distribution system downstream, such as from new construction, backwash, compromised pipes, etc.[24]

Water filtration is probably the most common method of purification for personal consumption, mainly because of its versatility and ease of use. Water filtration systems come in many forms and sizes, some of which are even portable. The most common water filtration systems are integrated with household sinks and refrigerators by connecting to the waterline.
The addition of inorganic coagulants such as aluminum sulfate (or alum) or iron (III) salts such as iron(III) chloride cause several simultaneous chemical and physical interactions on and among the particles. Within seconds, negative charges on the particles are neutralized by inorganic coagulants. Also within seconds, metal hydroxide precipitates of the iron and aluminium ions begin to form. These precipitates combine into larger particles under natural processes such as Brownian motion and through induced mixing which is sometimes referred to as flocculation. Amorphous metal hydroxides are known as "floc". Large, amorphous aluminum and iron (III) hydroxides adsorb and enmesh particles in suspension and facilitate the removal of particles by subsequent processes of sedimentation and filtration.[6]:8.2–8.3