A reverse osmosis filter is the do-it-all of water purification. The process is the only one that addresses both harmful microorganisms and pollutants at the same time. It works by forcing water under pressure through a membrane made of thin film composite, with a inner matrix of dense polymers. The result leaves purified water on one side of the membrane, and contaminants on the other side. The technology is reliable, but expensive and relatively cumbersome, and requires electricity to work. It is therefore a sound choice for use in fixed positions or by those who can afford to tow a small trailer with a small electrical generator around, but anyone on the move or without access to electricity needs to use other methods.
According to a 2007 World Health Organization (WHO) report, 1.1 billion people lack access to an improved drinking water supply; 88% of the 4 billion annual cases of diarrheal disease are attributed to unsafe water and inadequate sanitation and hygiene, while 1.8 million people die from diarrheal disease each year. The WHO estimates that 94% of these diarrheal disease cases are preventable through modifications to the environment, including access to safe water.[1] Simple techniques for treating water at home, such as chlorination, filters, and solar disinfection, and for storing it in safe containers could save a huge number of lives each year.[2] Reducing deaths from waterborne diseases is a major public health goal in developing countries.
Because the the semi-permeable membrane filters particles at the molecular level, reverse osmosis is extremely effective at removing bacteria, viruses, parasite cysts such as Giardia and Cryptosporidium, heavy metals such as lead and mercury, hard water minerals such as calcium and magnesium, and even fluoride and arsenic. It will not, however, remove certain pesticides and solvents small enough to pass through the membrane.
Water filtration is probably the most common method of purification for personal consumption, mainly because of its versatility and ease of use. Water filtration systems come in many forms and sizes, some of which are even portable. The most common water filtration systems are integrated with household sinks and refrigerators by connecting to the waterline.

Because the the semi-permeable membrane filters particles at the molecular level, reverse osmosis is extremely effective at removing bacteria, viruses, parasite cysts such as Giardia and Cryptosporidium, heavy metals such as lead and mercury, hard water minerals such as calcium and magnesium, and even fluoride and arsenic. It will not, however, remove certain pesticides and solvents small enough to pass through the membrane.


Iodine tastes just like it smells, fortunately, this is a pretty weak solution, so the taste is not overpowering; it is only slightly worse than city water. The advantages of iodine crystals, is that, one container can treat somewhere in the neighborhood of 10,000 gallons. As well as the fact that, it prepares the water relatively fast. The disadvantage is, as mentioned above, that it is harmful in the long term.
Despite its efficiency in killing microorganisms, UV radiation will not remove heavy metals and particles. Something else to consider is the high maintenance requirement for a UV purification system. Frequent cleaning and proper part replacement are necessary requirements in maintaining a properly functioning system. Read our article on UV water purification systems for home to find out more.
The most common disinfection method involves some form of chlorine or its compounds such as chloramine or chlorine dioxide. Chlorine is a strong oxidant that rapidly kills many harmful micro-organisms. Because chlorine is a toxic gas, there is a danger of a release associated with its use. This problem is avoided by the use of sodium hypochlorite, which is a relatively inexpensive solution used in household bleach that releases free chlorine when dissolved in water. Chlorine solutions can be generated on site by electrolyzing common salt solutions. A solid form, calcium hypochlorite, releases chlorine on contact with water. Handling the solid, however, requires more routine human contact through opening bags and pouring than the use of gas cylinders or bleach, which are more easily automated. The generation of liquid sodium hypochlorite is inexpensive and also safer than the use of gas or solid chlorine. Chlorine levels up to 4 milligrams per liter (4 parts per million) are considered safe in drinking water.[12]
Waters exiting the flocculation basin may enter the sedimentation basin, also called a clarifier or settling basin. It is a large tank with low water velocities, allowing floc to settle to the bottom. The sedimentation basin is best located close to the flocculation basin so the transit between the two processes does not permit settlement or floc break up. Sedimentation basins may be rectangular, where water flows from end to end, or circular where flow is from the centre outward. Sedimentation basin outflow is typically over a weir so only a thin top layer of water—that furthest from the sludge—exits.
The desalinated water is stabilized to protect downstream pipelines and storage, usually by adding lime or caustic soda to prevent corrosion of concrete-lined surfaces. Liming material is used to adjust pH between 6.8 and 8.1 to meet the potable water specifications, primarily for effective disinfection and for corrosion control. Remineralisation may be needed to replace minerals removed from the water by desalination. Although this process has proved to be costly and not very convenient if it is intended to meet mineral demand by humans and plants. The very same mineral demand that freshwater sources provided previously. For instance water from Israel's national water carrier typically contains dissolved magnesium levels of 20 to 25 mg/liter, while water from the Ashkelon plant has no magnesium. After farmers used this water, magnesium-deficiency symptoms appeared in crops, including tomatoes, basil, and flowers, and had to be remedied by fertilization. Current Israeli drinking water standards set a minimum calcium level of 20 mg/liter. The postdesalination treatment in the Ashkelon plant uses sulfuric acid to dissolve calcite (limestone), resulting in calcium concentration of 40 to 46 mg/liter. This is still lower than the 45 to 60 mg/liter found in typical Israeli fresh water.

Water, apart from shelter, can become the most immediate need in a survival situation. Drinkable water is a vital resource. Depending on the level of activity, and ambient temperature, a person can live about 3 days without water. Prolonged activity without proper hydration coupled with malnutrition will quickly lower chances for survival. Finding a way to create and maintain a source of clean drinking water is essential for both short and long term emergency preparedness. Whether you find yourself lost in the wilderness or in an urban emergency scenario such as Katrina and Toledo's water crisis, water is life. Just one day without this precious fluid and we begin to see the symptoms of dehydration.
The filters can be changed easily without the help of any tools. You don’t have to worry if you have forgotten about the schedule to change the filters. You will have stickers along the brondell that reminds you to change them. Even LED Light indicator will not let you forget about the maintenance time. LED Light on Faucet will glow whenever it is needed.
Inclined flat plates or tubes can be added to traditional sedimentation basins to improve particle removal performance. Inclined plates and tubes drastically increase the surface area available for particles to be removed in concert with Hazen's original theory. The amount of ground surface area occupied by a sedimentation basin with inclined plates or tubes can be far smaller than a conventional sedimentation basin.

Pretreatment is important when working with reverse osmosis and nanofiltration membranes due to the nature of their spiral-wound design. The material is engineered in such a fashion as to allow only one-way flow through the system. As such, the spiral-wound design does not allow for backpulsing with water or air agitation to scour its surface and remove solids. Since accumulated material cannot be removed from the membrane surface systems, they are highly susceptible to fouling (loss of production capacity). Therefore, pretreatment is a necessity for any reverse osmosis or nanofiltration system. Pretreatment in sea water reverse osmosis systems has four major components:


Treatment with reverse osmosis is limited, resulting in low recoveries on high concentration (measured with electrical conductivity) and fouling of the RO membranes. Reverse osmosis applicability is limited by conductivity, organics, and scaling inorganic elements such as CaSO4, Si, Fe and Ba. Low organic scaling can use two different technologies, one is using spiral wound membrane type of module, and for high organic scaling, high conductivity and higher pressure (up to 90 bars) disc tube modules with reverse-osmosis membranes can be used. Disc tube modules were redesigned for landfill leachate purification, that is usually contaminated with high levels of organic material. Due to the cross-flow with high velocity it is given a flow booster pump, that is recirculating the flow over the same membrane surface between 1.5 and 3 times before it is released as a concentrate. High velocity is also good against membrane scaling and allows successful membrane cleaning.

Filters have to be changed after every 6-12 months and RO-Membrane demands to change after every 2-3 years. The maintenance depends on the source of your water. If your water is more contaminated you may need to change it more than once every 6-12 months. The best part is transparent housing that helps you to identify the time when filters need to be changed.


Iodine tastes just like it smells, fortunately, this is a pretty weak solution, so the taste is not overpowering; it is only slightly worse than city water. The advantages of iodine crystals, is that, one container can treat somewhere in the neighborhood of 10,000 gallons. As well as the fact that, it prepares the water relatively fast. The disadvantage is, as mentioned above, that it is harmful in the long term.
Waters exiting the flocculation basin may enter the sedimentation basin, also called a clarifier or settling basin. It is a large tank with low water velocities, allowing floc to settle to the bottom. The sedimentation basin is best located close to the flocculation basin so the transit between the two processes does not permit settlement or floc break up. Sedimentation basins may be rectangular, where water flows from end to end, or circular where flow is from the centre outward. Sedimentation basin outflow is typically over a weir so only a thin top layer of water—that furthest from the sludge—exits.
Use sedimentation. When you don’t have access to anything that you can use to filter the water, you can remove large particulate from water by letting it settle. Collect the water in a bowl or jar. Leave the water to settle for one to two hours. During this time, heavier particles will sink to the bottom, and lighter material will float to the top.[3]

This system can purify up to 50 gallons of water per day and has 5 stages of filtration to remove up to 99 percent of TDS. For every gallon of purified water produced, there are 3 gallons of wastewater. This is an average conversion rate and is much better than some water filtration systems that have 4 or 5 gallons of wastewater for every purified gallon produced.

Assuming you can get a fire going, and have a metal container. After filtering as many of the particulates as possible. Fill your container with water, place over the fire, bring to a rapid boil, then allow to cool (drinking hot water can induce vomiting). Boiling will kill the harmful bacteria in the water, as they cannot withstand the temperature.
Distillation is a water purification method that utilizes heat to collect pure water in the form of vapor. This method is effective by the scientific fact that water has a lower boiling point than other contaminants and disease-causing elements found in water. Water is subjected to a heat source until it attains its boiling point. It is then left at the boiling point until it vaporizes. This vapor is directed into a condenser to cool. Upon cooling, vapor is reversed into liquid water that is clean and safe for drinking. Other substances that have a higher boiling point are left as sediments in the container.
×