The tourist season got off to a grisly start this year in Gulf Shores, Ala. During a two-day period in early June, four men drowned after being caught in rip currents. The unusually strong currents were invisible, not even roiling the surface. Rip currents occur when water rushing back from the shoreline is channeled through a narrow gap between two sand bars, accelerating the outward flow.
Furthermore, animals have to drink and are known to visit water holes. This raises several concerns, 1) Animals are not very mindful of their toilet etiquette and 2) Predators will sometimes use water holes as a place of attack. If we were desperate, (dying of thirst) and had no way to purify the water, first we really should ask ourselves how we got ourselves into such a situation, then we would have no choice but to drink the water in hopes that we are rescued before the water borne disease kills us. Think outside the box, is there a way to get a makeshift bowl (wood, vegetation) and use hot rocks to boil the water. Is there any material around, bamboo etc that can be used to slowly bring the water to a boil. Build a multiple stage filter using sand, charcoal and sphagnum moss which has been known to contain some levels of iodine. If all that fails then we would be faced with the choice of drinking the untreated water. We know that moving water is preferable to standing water, but what can we do. We can walk around the water source, find the area with the least animal traffic and preferably a sandy shoreline. We can then dig a hole near the water deep enough to allow water to collect. The distance from the water source will have to be judged by the soil we are digging. The hope here is that the water will slowly seep into the hole and begin to collect while being "filtered" by the sand and rocks. At this point we have to get creative to get the water out. Perhaps make a straw out of natural materials or simply soak a bandana and squeeze it into our mouth. This would be a last resort and very risky.
Many reef aquarium keepers use reverse osmosis systems for their artificial mixture of seawater. Ordinary tap water can contain excessive chlorine, chloramines, copper, nitrates, nitrites, phosphates, silicates, or many other chemicals detrimental to the sensitive organisms in a reef environment. Contaminants such as nitrogen compounds and phosphates can lead to excessive and unwanted algae growth. An effective combination of both reverse osmosis and deionization is the most popular among reef aquarium keepers, and is preferred above other water purification processes due to the low cost of ownership and minimal operating costs. Where chlorine and chloramines are found in the water, carbon filtration is needed before the membrane, as the common residential membrane used by reef keepers does not cope with these compounds.
The reverse osmosis membrane used in the RCC7AK is rated for up to 75 gallons per day, which is plenty to meet the needs of most households shopping for an under sink reverse osmosis system. It takes anywhere from 1 to 3 hours to fill the storage tank, but once the tank is full, you’ll have purified water ready and waiting under the sink. A lead-free brushed nickel metal faucet for countertop installation is included so you can bypass the tap and have fresh, clean water on demand.
The addition of inorganic coagulants such as aluminum sulfate (or alum) or iron (III) salts such as iron(III) chloride cause several simultaneous chemical and physical interactions on and among the particles. Within seconds, negative charges on the particles are neutralized by inorganic coagulants. Also within seconds, metal hydroxide precipitates of the iron and aluminium ions begin to form. These precipitates combine into larger particles under natural processes such as Brownian motion and through induced mixing which is sometimes referred to as flocculation. Amorphous metal hydroxides are known as "floc". Large, amorphous aluminum and iron (III) hydroxides adsorb and enmesh particles in suspension and facilitate the removal of particles by subsequent processes of sedimentation and filtration.[6]:8.2–8.3 
×